Translate

Saturday, August 04, 2018

Understanding the Role of Smart City & its Components in the IoT Era

To cope with the increasing population, hyper-urbanization, globalization as well as to ensure economic and environmental stability, cities are now focusing on becoming smart cities. Smart City is a concept of utilizing technologies and connected data sensors to enhance and become powerful in terms of infrastructure and city operations. This includes monitoring and managing of public assets, transportation systems, citizens, power plants, water supplies, information systems, civil bodies, and other community services. As per the new study from Navigant Research, the global market for smart city services is expected to reach $225.5 billion within the next decade.
Connected technologies and IoT solutions play important roles in transforming cities into smart cities. Implementing smart city with IoT and connected technology helps enhance the quality, performance, and interactivity of urban services, optimize resources and reduce costs.
Connected technology and #IoT are keys to enabling #smartcities with improved infrastructure, enhanced environmental stability, better transportation systems & urbanization – via @einfochipsltd

Let’s see the various components of smart city and their impact in the IoT era:

1.    Smart Infrastructure

The global market for smart urban infrastructure in smart cities, include advanced connected streets, smart parking, smart lighting, and other transportation innovations. Here’s how they work:
  • Smart Lighting: With smart lighting, city authorities can keep real-time tracking of lighting to ensure optimized illumination and deliver demand-based lighting in different zones. Smart lighting also helps in daylight harvesting and save energy by dimming out sectors with no occupancies For e.g. parking lots can be dimmed during work hours and when a car is entering, it will be detected and appropriate sectors can be illuminated, while others can be kept at diffused setting.
Smart-Lighting
  • Connected Streets: Connected and smart streets are capable of acquiring data and delivering information and services to and from millions of devices, which includes information about traffic, road blockages, roadworks, etc. This helps in efficient management of resources and people to enhance public transportation and the urban landscape.
  • Smart Parking Management: Smart parking management system can be used to find the vacant location for a vehicle at different public places. Smart Parking’s In-Ground Vehicle Detection Sensors are core technologies, playing a key part in the Smart Parking solution that is revolutionizing how drivers in the malls and city centers can find an available parking space. Wireless sensors are embedded into parking spaces, transmitting data on the timing and duration of the space used via local signal processors into a central parking management application. Smart Parking reduces congestion, decreases vehicle emissions, lowers enforcement costs and cuts driver stress. For effective deployment of smart parking technologies, each device needs to have a reliable connectivity with the cloud servers.
Smart-Parking-Management
In-Ground #VehicleDetection sensors in #smartparking solutions help drivers identify parking occupancy and vacant parking spots – via @einfochipsltd
  •  Connected Charging Stations: Smart infrastructure also includes implementing charging stations in parking systems, city fleets, shopping malls and buildings, airports, and bus stations across the city. Electronic vehicle (EV) charging platforms can be integrated with IoT to streamline the operations of EV charging and addresses the impact of the power grid.
Connected-Charging-Stations

2. Smart Buildings & Properties

Smart buildings utilize different systems to ensure safety and security of buildings, maintenance of assets and overall health of the surrounding.
  • Safety & Security Systems: These include implementing remote monitoring, biometrics, IP surveillance cameras, and wireless alarms to reduce unauthorized access to buildings and chances of thefts. It also includes utilizing Perimeter Access Control to stop access to restricted areas of the property and detect people in non-authorized areas.
  • Smart Garden & Sprinkler System: Smart sprinkler system synced with connected technologies and cloud can be used to water plants with the assurance that plants get the right amount of water. Smart garden devices can also perform tasks such as measuring soil moisture and levels of fertilizer, helping the city authorities to save on water bill (smart sprinkler devices use weather reports and automatically adjust their schedule to stay off when it rains), and keep the grass from overgrowing in the convenient way (robot lawnmowers).
  • Smart Heating & Ventilation: Smart heating and ventilation systems monitor various parameters such as temperature, pressure, vibration, humidity of the buildings and properties such as movie theatres, and historical monuments. Wireless sensor network deployment is the key to ensuring appropriate heating and ventilation. These sensors also collect data to optimize the HVAC systems, improving their efficiency and performance in the buildings.
Smart-Heating-and-Ventilation

3. Smart Industrial Environment

Industrial environments present unique opportunities for developing applications associated with the Internet of things and connected technologies which can be utilized in the following areas:
  • Forest Fire Detection: Helps in monitoring of combustion gases and preemptive fire conditions to define alert zones.
  • Air/Noise Pollution: Helps in controlling of CO2 emissions of factories, pollution emitted by cars and toxic gases generated on farms.
Air-Noise-Pollution
  • Snow Level Monitoring: Helps in identifying the real-time condition of ski tracks, allowing security corporations for avalanche prevention.
  • Landslide and Avalanche Avoidance: Helps in monitoring of soil moisture, earth density, as well as vibrations to identify dangerous patterns in land conditions.
  • Earthquake Early Detection: Helps in detecting the chances of tremors by utilizing distributed controls at specific places of tremors.
  • Liquid Presence: Helps in detecting the presence of liquid in data centers, building grounds, and warehouses to prevent breakdowns and corrosion.
  • Radiation Levels: Helps in distributed measurement of radiation levels in nuclear power stations surroundings to generate leakage alerts.
  • Explosive and Hazardous Gases: Helps in detecting gas levels and leakages in chemical factories, industrial environments, and inside mines.

4. Smart City Services

Smart city services include services for public safety and emergencies.  Below are the key areas where IoT and connected technologies can help:
  • Smart Kiosk: Smart kiosks play an important role in providing different city services to the public such as Wi-Fi services, 24×7 IP surveillance cameras and analytics, Digital signage for advertisement and public announcements. In some cases, free video calling and free mobile charging station, as well as environmental sensor integration can also be implemented. Smart kiosks also provide information about restaurants, retail stores, and events in the immediate area. It can also provide mapping for visitors and can sync with smartphones to give additional data as needed.
Implementing #smartkiosks in #smartcities helps provide services like free Wifi, 24×7 #IPSurveillance, video calling, mobile charging & #GPStracking – via @einfochipsltd
  • Monitoring of Risky Areas: Sensors (cameras, street lights) and actuators for real-time monitoring can be implemented in risky areas or areas prone to accidents. Upon detecting any crime, or mishap, these sensors can alert the citizens to avoid such areas temporarily.
  • Public Security: IoT sensors can be installed at public organizations and houses to protect citizens and provide real-time information to fire and police departments when it detects a theft.
  • Fire/Explosion Management: Smart fire sensors can detect and automatically take actions based on the level of severity, such as detecting false alarms, informing firefighters and ambulance, blocking off nearby streets/buildings on the requirement, helping people to evacuate, and coordinating rescue drones and robots.
  • Automatic Health-Care Dispatch: Smart healthcare devices can be implemented at public places to provide 24/7 health care for patients like dispensing medicines and drugs to patients. These devices can also be used to call an ambulance to pick up the patients in cases of emergencies.

5. Smart Energy Management

Here’s how cities can implement smart energy management:
  • Smart Grid: Smart grids are digitally monitored, self-healing energy systems that deliver electricity or gas from generation sources. Smart grid solutions can be across industrial, residential as well as in transmission and distribution projects. Various IoT solutions like gateways can be used to achieve energy conservation at both the transmission level and consumer level. For e.g., gateways can provide a broader view of energy distribution patterns to utility companies with high connectivity and real-time analytics. Also, it develops a Demand-Response mechanism for the utility providers to optimize energy distribution based on the consumption patterns.
  • Smart Meters: Smart meters can be used in residential and industrial metering sectors for electricity and gas meters where there is a need to identify the real-time information on energy usage. Consumers and utilities with smart meters can monitor their energy consumption. Moreover, energy analytics, reports, and public dashboards can be also accessed over the internet using mobile applications integrated with these smart meters.

6. Smart Water Management

IoT and connected devices enable smart water management in the following ways:
  • Potable Water Monitoring: Monitors the quality of tap water in the cities.
  • Chemical Leakage: Identifies leakages and wastes of factories in rivers.
  • Swimming Pool Remote Measurement: Controls the swimming pool conditions remotely.
  • Pollution Levels in the Sea: Controls the occurrence of leakages and wastes in the sea.
  • Water Outflows: Detects of liquid presence outside tanks and pressure variations along pipes.
  • River Floods: Monitors water level variations in rivers, dams, and reservoirs.

7. Smart Waste Management

Smart solutions for tracking wastes help municipalities and waste service managers the ability to optimize wastes, reduce operational costs, and better address the environmental issues associated with an inefficient waste collection.
Smart-Waste-Management
Implementation of a smart city comes with enormous opportunities to transform the lives of people and improve the overall city infrastructure and operations. Smart sensor networks, Internet of Things (IoT) and connected technologies are the key solutions for smart city implementation.
eInfochips provides Snapbricks Intelligent IoT gateway framework, which is a secure, interoperable, and multi OS-stack IoT gateway based on a micro-services based architecture with Edge and Fog computing capabilities to help you in smart city implementation. To know more about eInfochips Snapbricks IoT gateway, get in touch with us.