Gartner Identifies the Top 10 Strategic Technology Trends for 2016
Analysts Explore Top Industry Trends at Gartner Symposium/ITxpo 2015, October 4-8 in Orlando
Gartner, Inc. today highlighted the top 10 technology trends that will be strategic for most organizations in 2016. Analysts presented their findings during the sold-out
Gartner Symposium/ITxpo, which is taking place here through Thursday.
Gartner defines a strategic technology trend as one with the potential for significant impact on the organization. Factors that denote significant impact include a high potential for disruption to the business, end users or IT, the need for a major investment, or the risk of being late to adopt. These technologies impact the organization's long-term plans, programs and initiatives.
"Gartner's top 10 strategic technology trends will shape
digital business opportunities through 2020," said
David Cearley, vice president and Gartner Fellow. "The first three trends address merging the physical and virtual worlds and the emergence of the digital mesh. While organizations focus on digital business today, algorithmic business is emerging. Algorithms — relationships and interconnections — define the future of business. In algorithmic business, much happens in the background in which people are not directly involved. This is enabled by smart machines, which our next three trends address. Our final four trends address the new IT reality, the new architecture and platform trends needed to support digital and algorithmic business."
The top 10 strategic technology trends for 2016 are:
The Device MeshThe device mesh refers to an expanding set of endpoints people use to access applications and information or interact with people, social communities, governments and businesses. The device mesh includes mobile devices, wearable, consumer and home electronic devices, automotive devices and environmental devices — such as sensors in the
Internet of Things (IoT).
"In the postmobile world the focus shifts to the mobile user who is surrounded by a mesh of devices extending well beyond traditional mobile devices," said Mr. Cearley.
While devices are increasingly connected to back-end systems through various networks, they have often operated in isolation from one another. As the device mesh evolves, we expect connection models to expand and greater cooperative interaction between devices to emerge.
Ambient User ExperienceThe device mesh creates the foundation for a new continuous and ambient user experience. Immersive environments delivering augmented and virtual reality hold significant potential but are only one aspect of the experience. The ambient user experience preserves continuity across boundaries of device mesh, time and space. The experience seamlessly flows across a shifting set of devices and interaction channels blending physical, virtual and electronic environment as the user moves from one place to another.
"Designing mobile apps remains an important strategic focus for the enterprise," said Mr. Cearley. "However, the leading edge of that design is focused on providing an experience that flows across and exploits different devices, including IoT sensors, common objects such as automobiles, or even factories. Designing these advanced experiences will be a major differentiator for independent software vendors (ISVs) and enterprises alike by 2018."
3D Printing MaterialsAdvances in 3D printing have already enabled 3D printing to use a wide range of materials, including advanced nickel alloys, carbon fiber, glass, conductive ink, electronics, pharmaceuticals and biological materials. These innovations are driving user demand, as the practical applications for 3D printers expand to more sectors, including aerospace, medical, automotive, energy and the military. The growing range of 3D-printable materials will drive a compound annual growth rate of 64.1 percent for enterprise 3D-printer shipments through 2019. These advances will necessitate a rethinking of assembly line and supply chain processes to exploit 3D printing.
"3D printing will see a steady expansion over the next 20 years of the materials that can be printed, improvement in the speed with which items can be printed and emergence of new models to print and assemble composite parts," said Mr. Cearley.
Information of EverythingEverything in the digital mesh produces, uses and transmits information. This information goes beyond textual, audio and video information to include sensory and contextual information. Information of everything addresses this influx with strategies and technologies to link data from all these different data sources. Information has always existed everywhere but has often been isolated, incomplete, unavailable or unintelligible. Advances in semantic tools such as graph databases as well as other emerging data classification and information analysis techniques will bring meaning to the often chaotic deluge of information.
Advanced Machine LearningIn advanced machine learning, deep neural nets (DNNs) move beyond classic computing and information management to create systems that can autonomously learn to perceive the world, on their own. The explosion of data sources and complexity of information makes manual classification and analysis infeasible and uneconomic. DNNs automate these tasks and make it possible to address key challenges related to the information of everything trend.
DNNs (an advanced form of machine learning particularly applicable to large, complex datasets) is what makes smart machines appear "intelligent." DNNs enable hardware- or software-based machines to learn for themselves all the features in their environment, from the finest details to broad sweeping abstract classes of content. This area is evolving quickly, and organizations must assess how they can apply these technologies to gain competitive advantage.
Autonomous Agents and ThingsMachine learning gives rise to a spectrum of smart machine implementations — including robots, autonomous vehicles, virtual personal assistants (VPAs) and smart advisors — that act in an autonomous (or at least semiautonomous) manner. While advances in physical smart machines such as robots get a great deal of attention, the software-based smart machines have a more near-term and broader impact. VPAs such as Google Now, Microsoft's Cortana and Apple's Siri are becoming smarter and are precursors to autonomous agents. The emerging notion of assistance feeds into the ambient user experience in which an autonomous agent becomes the main user interface. Instead of interacting with menus, forms and buttons on a smartphone, the user speaks to an app, which is really an intelligent agent.
"Over the next five years we will evolve to a postapp world with intelligent agents delivering dynamic and contextual actions and interfaces," said Mr. Cearley. "IT leaders should explore how they can use autonomous things and agents to augment human activity and free people for work that only people can do. However, they must recognize that smart agents and things are a long-term phenomenon that will continually evolve and expand their uses for the next 20 years."
Adaptive Security ArchitectureThe complexities of digital business and the algorithmic economy combined with an emerging "hacker industry" significantly increase the threat surface for an organization. Relying on perimeter defense and rule-based security is inadequate, especially as organizations exploit more cloud-based services and open APIs for customers and partners to integrate with their systems. IT leaders must focus on detecting and responding to threats, as well as more traditional blocking and other measures to prevent attacks. Application self-protection, as well as user and entity behavior analytics, will help fulfill the adaptive security architecture.
Advanced System ArchitectureThe digital mesh and smart machines require intense computing architecture demands to make them viable for organizations. Providing this required boost are high-powered and ultraefficient neuromorphic architectures. Fueled by field-programmable gate arrays (FPGAs) as an underlining technology for neuromorphic architectures, there are significant gains to this architecture, such as being able to run at speeds of greater than a teraflop with high-energy efficiency.
"Systems built on GPUs and FPGAs will function more like human brains that are particularly suited to be applied to deep learning and other pattern-matching algorithms that smart machines use," said Mr. Cearley. "FPGA-based architecture will allow further distribution of algorithms into smaller form factors, with considerably less electrical power in the device mesh, thus allowing advanced machine learning capabilities to be proliferated into the tiniest IoT endpoints, such as homes, cars, wristwatches and even human beings."
Mesh App and Service ArchitectureMonolithic, linear application designs (e.g., the three-tier architecture) are giving way to a more loosely coupled integrative approach: the apps and services architecture. Enabled by software-defined application services, this new approach enables Web-scale performance, flexibility and agility. Microservice architecture is an emerging pattern for building distributed applications that support agile delivery and scalable deployment, both on-premises and in the cloud. Containers are emerging as a critical technology for enabling agile development and microservice architectures. Bringing mobile and IoT elements into the app and service architecture creates a comprehensive model to address back-end cloud scalability and front-end device mesh experiences. Application teams must create new modern architectures to deliver agile, flexible and dynamic cloud-based applications with agile, flexible and dynamic user experiences that span the digital mesh.
Internet of Things PlatformsIoT platforms complement the mesh app and service architecture. The management, security, integration and other technologies and standards of the IoT platform are the base set of capabilities for building, managing and securing elements in the IoT. IoT platforms constitute the work IT does behind the scenes from an architectural and a technology standpoint to make the IoT a reality. The IoT is an integral part of the digital mesh and ambient user experience and the emerging and dynamic world of IoT platforms is what makes them possible.
"Any enterprise embracing the IoT will need to develop an IoT platform strategy, but incomplete competing vendor approaches will make standardization difficult through 2018," said Mr. Cearley.
About Gartner Symposium/ITxpoGartner Symposium/ITxpo is the world's most important gathering of CIOs and senior IT executives. This event delivers independent and objective content with the authority and weight of the world's leading IT research and advisory organization, and provides access to the latest solutions from key technology providers. Gartner's annual Symposium/ITxpo events are key components of attendees' annual planning efforts. IT executives rely on Gartner Symposium/ITxpo to gain insight into how their organizations can use IT to address business challenges and improve operational efficiency.
Upcoming dates and locations for Gartner Symposium/ITxpo 2015 include:
October 19-22, Sao Paulo, BrazilOctober 26-29, Gold Coast, AustraliaOctober 28-30, Tokyo, JapanNovember 2-5, Goa, IndiaNovember 8-12, Barcelona, Spain
Contacts
About Gartner
Gartner, Inc. (NYSE: IT) is the world's leading information technology research and advisory company. The company delivers the technology-related insight necessary for its clients to make the right decisions, every day. From CIOs and senior IT leaders in corporations and government agencies, to business leaders in high-tech and telecom enterprises and professional services firms, to technology investors, Gartner is the valuable partner to clients in approximately 10,000 distinct enterprises worldwide. Through the resources of Gartner Research, Gartner Executive Programs, Gartner Consulting and Gartner Events, Gartner works with every client to research, analyze and interpret the business of IT within the context of their individual role. Founded in 1979, Gartner is headquartered in Stamford, Connecticut, USA, and has 7,600 associates, including more than 1,500 research analysts and consultants, and clients in 90 countries. For more information, visit
www.gartner.com.